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Convectively unstable, open reactive flows of oscillatory media, whose phase is fixed or periodically modu-
lated at the inflow boundary, are known to result in stationary and traveling waves, respectively. The latter are
implicated in biological segmentation. The boundary-controlled pattern selection by this flow-distributed os-
cillator �FDO� mechanism has been generalized to include differential flow �DIFI� and differential diffusion
�Turing� modes. Our present goal is to clarify the relationships among these mechanisms in the general case
where there is differential flow as well as differential diffusion. To do so we analyze the dispersion relation for
linear perturbations in the presence of periodic boundary forcing, and show how the solutions are affected by
differential transport. We find that the DIFI and FDO modes are closely related and lie in the same frequency
range, while the Turing mechanism gives rise to a distinct set of unstable modes in a separate frequency range.
Finally, we substantiate the linear analysis by nonlinear simulations and touch upon the issue of competition of
spatial modes.
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I. INTRODUCTION

Recently, theoretical �1–15� and experimental �5,16–22�
attention has been focused on spatiotemporal instabilities in
one-dimensional reactive flows. Among these pattern-
forming instabilities are the differential flow instability
�9,21,25,10�, Turing �23,24�, and the physically distinct
flow-distributed oscillation �FDO� �1,5,7,19,8� mechanisms.
Two of these, DIFI and FDO, necessarily involve a flow,
while Turing and DIFI necessarily involve the differential
transport of activator and inhibitor species.

In a flowing medium instabilities may be absolute or con-
vective �26–28,2,3�. In the first case, a localized disturbance
grows with time and spreads both upstream and downstream.
In the convective case, on the other hand, a localized distur-
bance cannot propagate upstream, and so the effect of a tem-
porary, local perturbation is eventually washed downstream
and out of the system. However, persistent disturbances up-
stream can have a large effect on the downstream behavior.
This leads to the possibilities of patterns which are controlled
primarily by the upstream boundary conditions and of noise-
sustained structures �28,27�. We are interested here in the
convective case, where the upstream boundary is crucial to
the control of the pattern. FDO is a convective mechanism of
pattern formation whereby an open flow maps the temporal
dynamics of an oscillating medium, whose phase is set at the
upstream boundary, onto space.

A fixed boundary condition results in stationary waves
�2,1,5,19,3,4�, while time-periodic boundary conditions give
rise to upstream and downstream traveling �5,18,19� and pul-
sating �18,19� waves with periodicity equal to that of the
boundary. In the kinematic limit of fast flow and/or vanishing
diffusion these waves arise from the phase dynamics of the
oscillating medium �5,7,8,19�. Analytic expressions for the
phase velocity c and wavelength � of the phase waves in this
limit are given in Refs. �7,8,19�. The phase dynamics makes
FDO conceptually the simplest of the pattern-forming

mechanisms, although it was discovered later than the others.
When diffusion becomes important �at a sufficiently low
flow rate� and the system comes close to the reaction-
diffusion limit, the structures may be damped or their wave
forms may be modified significantly from the dynamics of
the local system �14�. The Turing instability, by contrast, was
initially conceived of as an absolute instability of a stationary
reaction-diffusion medium. In a flow system, however, Tur-
ing �8,22,20�, DIFI �13�, bistable �8� patterns, and even
structures in passive media �8� can also be generated and
controlled convectively by the upstream boundary condition.

Since an open flow with a fixed upstream boundary is
equivalent, via a Galilean transformation, to a stationary me-
dium with a moving boundary �6–8,20�, the physical ideas of
FDO and other boundary-driven convective instabilities are
also applicable to growing media. In developmental biology
a FDO mechanism driven by an oscillator or “segmentation
clock” at the growth tip of an embryo leads to the formation
of somites, the precursors of vertebrae and body segments
during early embryogenesis �6–8,20� �the best-studied ex-
amples are chick and mouse�. Quite generally, pattern forma-
tion on a growing domain is vitally important in develop-
mental biology �29,30�. Recent experiments �20,22,32� in
Turing and in Hopf unstable media also make use of a mov-
ing boundary that is equivalent to a flow. By contrast, the
packed bed reactor �PBR� is a flow reactor in which the inlet,
not the medium, is fixed in the laboratory frame of reference.
In the experiments of �5,18,19,16,17� the reactor is fed by
the outlet of a continuous stirred tank reactor �CSTR� which
can be made to oscillate, generating traveling waves in the
PBR tube, or remain at a fixed point, leading to stationary
waves.

Satnoianu et al. �11,12� generalized the FDO scenario by
allowing differential transport �different flow rates and/or
diffusion rates� to act on the key chemical species. They
suggested that the resulting waves be viewed as variants of a
general mechanism called flow- and diffusion-distributed
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structures �FDS�. In Ref. �12�, traveling waves and combina-
tions of differential flow and diffusion were also considered.
Traveling waves were referred to as DIFI while stationary
waves were referred to as FDS.

The goal of the present work is to understand what con-
tribution differential transport makes to the basic FDO sce-
nario and to clarify the relationships among the convectively
driven FDO and the differential transport �Turing and DIFI�
modes in an open flow. We develop a general linear stability
analysis for convective modes driven by boundary perturba-
tions and illustrate the results by plotting solutions of the
dispersion relations. Our approach differs from that of Refs.
�11–13� in several ways. First, we choose to focus on pat-
terns driven convectively by the upstream boundary condi-
tion, to distinguish them from absolute instabilities. We do
this because the possibility of convective instability embod-
ies much of the additional behavior that is possible with a
flow �or growth� as opposed to a stationary medium. Accord-
ingly, we treat the dispersion relation for small disturbances
differently, taking the real frequency, set by the boundary
condition, as the independent variable and examining the
spatial behavior of the resulting disturbance rather than ex-
amining the temporal behavior of an imposed spatial pertur-
bation. We consider a mode unstable if it grows with down-
stream distance in response to a constant or periodic driving
at the boundary. This approach resembles that of Refs. �1,14�
and was also considered in Ref. �26� in the context of plasma
physics.

Within this approach we find it unnecessary to distinguish
sharply between stationary and traveling modes as was done
in Ref. �13�; all are treated within the same dispersion rela-
tion, and stationary modes simply correspond to the particu-
lar case of zero frequency. We find instead that an examina-
tion of the dispersion relation results in a natural grouping of
the modes showing that the FDO and DIFI mechanisms are
closely related to each other, both being associated with an
underlying Hopf instability, while the Turing mechanism
gives rise to a distinct set of modes. The two sets of modes
show up as separate peaks in different frequency ranges, and
are also clearly distinguished by other criteria including the
phase velocity and the relative phase between oscillations of
the activator and inhibitor. The DIFI and FDO modes can be
either traveling or stationary, while Turing modes are station-
ary only in the case of zero flow. In that case �the case in
which the Turing mechanism was originally considered�, the
instability is absolute and therefore not controlled by the
boundary. However, it has been observed that Turing patterns
can be generated by boundary forcing in a system with non-
zero flow �8,20,22� in which case they are advected by the
flow, i.e., they are stationary in the comoving frame. In this
case the instability can be convective and a Turing mode
with a particular wavelength can be selected by imposing a
periodic perturbation at the inflow. We find that in the pres-
ence of simultaneous differential flow and differential diffu-
sion �relevant to the packed bed reactor� some of the distin-
guishing features of Turing modes are modified, but the
essential picture of two separate peaks remains unchanged.

At the end of the paper, we illustrate the results of our
linear analysis by some nonlinear simulations. We find that
the linear results give a rather good insight into the nature of

the fully nonlinear solutions, at least in the case where the
nonlinearity is not very strong. Finally we observe and com-
ment on the competition of wave modes.

II. LINEAR ANALYSIS OF RDA EQUATIONS

We consider the reaction-diffusion-advection �RDA�
equations describing the chemical kinetics and transport of
an activator and an inhibitor species. The chemical medium
is defined by the “local” or batch reactor dynamics together
with transport terms. We wish to consider several forms of
differential transport, so we allow each species to have its
own flow velocity and diffusion coefficient. The RDA equa-
tions are

�A

�t
= f�A,B� − �A

�A

�x
+ DA

�2A

�x2 ,

�B

�t
= g�A,B� − �B

�B

�x
+ DB

�2B

�x2 . �1�

Our aim is to analyze the pattern-forming instabilities, so we
shall assume that the local kinetics has a stable or unstable
fixed point, and linearize the equations for small perturba-
tions of the uniform fixed point state. For convenience, we
shall use units in which the flow velocity of species B is
unity. Linearizing near the fixed point �A0 ,B0�, transforming
the units to ones where �B=1, and defining the velocity and
diffusion ratios �v=�A /�B and �D=DA /DB, respectively, and
D=DB gives

�a

�t
= − �v

�a

�x
+ �DD

�2a

�x2 + a11a + a12b ,

�b

�t
= −

�b

�x
+ D

�2b

�x2 + a21a + a22b , �2�

where the matrix

��f ,g�
��a,b�

= �a11 a12

a21 a22
�

is the Jacobian of the local kinetic system evaluated at the
fixed point and a=A−A0, b=B−B0 are the perturbations. A
complex exponential solution

�a

b
� = �u

v
�eiwt+kx �3�

represents a traveling wave in which the concentrations of
both species oscillate.1 The relative amplitude and phase are
determined by the complex amplitudes u and v. �A real so-
lution is formed from Eq. �3� and its complex conjugate.�
Substitution into Eq. �2� gives

i�u = − �vku + �DDk2u + a11u + a12v ,

1The phase convention of the wave number k is that of Ref. �12�,
chosen for later convenience. Re k represents the spatial growth
rate, while −Im k is the inverse wavelength or “real” wave number.
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i�v = − kv + Dk2v + a21u + a22v , �4�

which can be combined to give the dispersion relation

0 = �DD2k4 − ��D + �V�Dk3

+ D�a11 + �Da22 + �V/D − i���D + �V��k2

+ �− �a11 + �Va22� + i��1 + �V��k + � − i�Tr − �2,

�5�

where Tr=a11+a22 and �=a11a22−a12a21 are, respectively,
the trace and determinant of the Jacobian. Two particular
cases of differential transport were studied in previous work.
The case �V=1, �D�1 is relevant to the moving-boundary
experiments �22� in which there is differential diffusion due
to the immobilization of one of the species, but the flow
velocities are the same, since it is actually the boundary that
moves relative to the medium. On the other hand, Satnoianu
et al. �12� considered the case �V=�D�1, which may be a
good approximation in a PBR-type flow system when one of
the species is immobilized and the other moves freely. The
pure FDO case �V=�D=1 has no differential transport. With
the appropriate changes of variables and restrictions on the
transport ratios, the above dispersion relation reduces to the
ones given in the previous references �1,8,12–14� for particu-
lar cases. We wish to consider more general forms of differ-
ential transport, for both theoretical and experimental rea-
sons. First, varying the two transport ratios independently
allows a fuller understanding of the effects of the two types
of differential transport and their interaction. Second, we
wish to allow the possibility of experiments in which the
transport coefficients are related in ways other than those
previously considered.

We analyze the steady-state response of the system to a
sinusoidal forcing of the inflow boundary at a constant am-
plitude. In general, in the linear approximation, this gives
rise to a traveling wave with a complex wave number and a
frequency equal to the forcing frequency. The frequency �
will be taken to be purely real, reflecting the constant ampli-
tude of the forcing. However, the convective dynamics of the
medium may cause the disturbance to grow or damp with the
downstream distance, so that k may be complex. Thus, we
consider the real � as an independent variable and solve the
dispersion relation numerically for the complex k. The dis-
persion relation is quartic in k and so it has in general four
solutions. Each is associated with an eigenvector u= � u

v
�

which can be found by substituting the solution k back into
Eq. �4�. In this way we can find k��� and u���. The ratio
R����v /u, which in general is complex and frequency de-
pendent, gives information about the relative amplitude and
phase of oscillations in the two species �an example is dis-
cussed below�. We will see that in general the four solutions
comprise two pairs, of which only one pair is relevant to the
system’s behavior near the upstream boundary. The two so-
lutions of a pair together give one physical oscillation mode
with an arbitrary phase.

A. Pure FDO: �V=�D=1

To illustrate the physical meaning of the dispersion rela-
tion, we consider first the simplest case of pure FDO, in

which �V=�D=1. It can easily be verified that in this case the
dispersion relation �5� does not depend on the Jacobian ma-
trix elements separately, but only on the trace and determi-
nant. The pair of equations �4� can then be diagonalized
completely by changing coordinates to the eigenbasis of the
Jacobian, and the quartic dispersion relation factorizes into
two quadratic ones as derived in Ref. �14�, one for each
eigenvector. The quadratic dispersion relations depend on the
Jacobian eigenvalues, which are given by

�± = Tr/2 ± �Tr2/4 − � �6�

and are complex conjugates if Tr2 /4−��0. For the sake of
simplicity we consider the particular case with

J = � 1 1

− 1 1
� , �7�

whose eigenvalues and eigenvectors are �±=1± i and

u± = � 1

±i
� . �8�

In general, the relative amplitude of the two components
is complex for an oscillatory system, indicating a phase dif-
ference between the two components. In this particular case,
the phase difference is � /2. A plot of the four solutions
km��� �m=1,2 ,3 ,4� then has the form shown in Fig. 1.
There are two solutions associated with each of the two
eigenvectors, of which one has a much larger real compo-
nent. Both solutions are necessary in order to satisfy a
boundary value problem in which boundary conditions are
specified at x=0 and at some downstream point x=L. How-
ever, it has been argued �27� that for quite general boundary
conditions at a far away downstream boundary, it is the so-
lution with the less positive growth rate that predominates
near the upstream boundary �x�L�. As an example, consider

FIG. 1. �Color online� All four solutions of the dispersion rela-
tion for the pure FDO case with a Hopf unstable local system and
no differential transport. The two lower solutions are labeled k± and
the two upper solutions are K±. K+ and k+ are both associated with
the eigenvector u+ and the other two with u−.
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adjusting the coefficients A and B in the general solution
Ae	1x+Be	2x �with 	2
	1� so as to satisfy either Dirichlet or
Neumann boundary conditions at x=L. In either of these
cases, B is smaller than A by a factor of order e�	2−	1�L.
Therefore, when there is a clear separation between the pairs
of solutions, the one with lower growth rate dominates ev-
erywhere but close to the downstream boundary, which we
take to be far away compared to the growth or damping
length scales �		1,2	L�1�. The same conclusion can be
reached by applying the reasoning of Ref. �26�. In that work
it was shown that, in the absence of absolute instabilities, a
true spatially amplifying �convectively unstable� mode can
be identified as one whose wave number crosses the imagi-
nary axis when a large negative imaginary constant is added
to the frequency. In the dispersion relations �4� and �5�, add-
ing a negative imaginary constant to the frequency is equiva-
lent to adding a negative constant to the trace of the Jaco-
bian, i.e., adding damping to the internal dynamics. When
such damping is added, the two solution branches move
apart, so that the upper solutions never cross the axis while
the lower solutions may do so. We therefore focus attention
on the lower solutions with smaller growth rates. These two
solutions are associated with the two eigenvectors of the
Jacobian, so we label them k±. They are complex conjugate
mirror images of each other under reflection through the ver-
tical axis �k+���=k−

*�−��� and represent the same physical
wave solution, namely,

�a

b
� = Re�ei�tek+xu+� = Re�e−i�tek−xu−�

= �cos��t + Im k+x�
sin��t + Im k+x�

�e�Re k+�x. �9�

Because of this reflection symmetry, it will be convenient in
the remainder of the paper to plot only one solution, with the
understanding that the reflected complex conjugate is also
present.

Figure 1 shows the growth rates and wave numbers for all
four solutions. Note the following. �1� Im k has a zero at the
natural frequency �=�0=��−Tr2 /4. When Im k=0, the
phase velocity

c = − �/Im k �10�

has a corresponding pole, as will be seen in Figs. 2–5. Dis-
turbances at precisely the natural frequency result in growing
uniform �k=0� oscillations of the medium �this is essentially
the batch Hopf mode� while perturbations faster or slower
than �0 give downstream or upstream traveling waves, re-
spectively, similarly to the kinematic results �5,8�. Stationary
waves occur for �=0. As shown in Ref. �14�, the sharpness
of the growth rate peak depends on the dimensionless quan-
tity D Tr/�2. Increasing the value of D �or, equivalently,
reducing the flow velocity� makes the peak sharper and nar-
rower and reduces the gap between the upper �K±� and lower
�k±� solutions, until, at the threshold of absolute instability,
the growth rate curve develops a cusp and the upper and
lower solutions cross. When the growth rate curves of the
two solutions cross, it is no longer correct to view the solu-

tion in the bulk as being determined primarily by the up-
stream boundary condition—it is also strongly influenced by
downstream conditions. This is the signature of an absolute
rather than a convective instability. The peak of the growth
rate occurs precisely at the frequency defined by the imagi-
nary part of the Jacobian eigenvalue. If the fixed point is not
Hopf unstable but instead has eigenvalues �± i with �
=Tr/2�0, then the picture is qualitatively the same, except
that the peak remains below the horizontal axis. Thus all
perturbations are damped in this case, but the most slowly
damped ones are at the natural frequency.

The pure FDO case can be viewed as a “baseline” for the
physical interpretation of the dispersion relations and their
solution curves in the presence of differential transport. Dif-
ferential transport will modify the shapes of the curves, and
will make the eigenvectors � dependent and no longer coin-
cident with those of the Jacobian.

Finally, note that in the case when the fixed point is an
unstable node rather than a focus, the Jacobian has distinct

FIG. 2. �Color online� Effect of differential flow on the FDO
peak. FN model, �=1.5, D=0.1, �D=1. �v=0.5,0.75,1 ,1.5,2. For
the family of curves, the arrows show the direction of increasing �v.
Dashed lines, �v
1; solid thin lines, �v�1; thick line, �v=1. Note
that for the pure FDO case ��v=1�, the amplitude ratio R is con-
stant, corresponding to an eigenvector of the Jacobian. In the pres-
ence of differential transport, however, R becomes frequency de-
pendent. The imaginary part of the amplitude ratio is related to the
relative phase of the two components.
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real eigenvalues and eigenvectors instead of complex conju-
gate pairs. Peak growth rates for the modes along both eigen-
vectors then occur at �=0 �14�. The above results are uni-
versal for any system with a Hopf instability.

B. The effects of differential transport

With the pure FDO case as a comparison, we now exam-
ine the effects of differential transport and the convective,
boundary driven manifestations of DIFI and Turing instabili-
ties. Typical results are shown in Figs. 2–5 using the
Fitzhugh-Nagumo-like �31� �FN� model �11�, �12� for the
local dynamics.

The key features of the relevant solutions in the FDO case
are that k+ has a growth peak and the associated phase ve-
locity has a pole at positive �, while k− has a peak and pole
on the opposite side, ��0. A brief summary of the effects of
differential transport on the dispersion relation solutions is as
follows.

�1� The primary effect of differential flow is to displace
and distort the positive-� peak of k+ �and its mirror image in
k−�. Depending on the details of the model, the peak may be
shifted to the left, right, upward or downward. The pole in
the phase velocity may also be shifted left or right. If suffi-
ciently strong, differential flow can raise the peak growth
rate from negative to positive, thus giving an instability even
for a stable fixed point. This is precisely what happens in
DIFI. For �V�1, the peak growth rate may occur quite far
from the pole of the phase velocity; thus the strongest insta-

bility is to a traveling wave solution rather than to a uniform
oscillation.

�2� The most important effect of differential diffusion in
the absence of differential flow ��D�1,�v=1� is to alter the
shape of the negative-� tail of the k+ solution �or, equiva-
lently, the positive tail of k−�. For fast inhibitor diffusion
��D�1� the negative tail can develop first an inflection point
and then a second growth rate peak. The modes within this
second peak are distinguished by the following features, con-
firming their interpretation as Turing patterns imposed by the
boundary condition and advected with the flow. �A� Their
phase velocities are all very close to unity �in units where the
flow velocity is 1� showing that they are stationary in the
comoving frame. �B� The amplitude ratio R from the associ-
ated eigenvector is almost purely real, meaning that, contrary
to the situation in self-sustained oscillations, there is no
phase lag between the two species �the activator and inhibi-
tor are almost exactly in phase or � out of phase�.

FIG. 3. �Color online� An example of the differential flow insta-
bility. FN model, �=0.9, D=0.2, �D=1, �v=0.5 �thin solid line�, 1
�thick line�, 2 �dashed line�. In the absence of differential flow, there
are no unstable modes, but there is nonetheless a peak in the �nega-
tive� growth rate at the natural oscillation frequency. Sufficiently
strong differential flow shifts the peak so that it rises above zero and
unstable traveling wave modes appear. For �v
1 �dashed line�, the
unstable modes are downstream traveling waves; for �v�1 �thin
solid line� they are upstream. The medium remains stable against
uniform oscillations. Viewed in this way, the differential flow insta-
bility can be viewed as simply a continuous deformation of the
FDO instability.

FIG. 4. �Color online� The effect of differential diffusion on the
dispersion relation in the absence of differential flow. FN model,
�=1.5, D=0.2, �v=1. �D=0.1,0.25,0.5,1. Thick line, �D=1; thin
lines, �D�1. Arrows show the direction of increasing �D. As �D

decreases, the FDO peak is distorted slightly, but much more no-
ticeable is the growth of a second peak. The modes in this latter
peak can be identified as Turing modes. Their phase velocity is
close to 1, and their amplitude ratio is almost purely real. Near the
FDO peak, on the other hand, the amplitude ratio is close to that of
an eigenvector of the Jacobian.
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For the most general case of differential transport, then,
the dispersion relation has either one or two peaks, which we
can identify as Hopf-FDO-DIFI and Turing peaks, respec-
tively. Changing �D can alter the shape of the FDO peak and
conversely, �V can alter the Turing peak, but they generally
retain a separate identity, and for the most part exist in a
“seesaw” relation.

We now illustrate these statements using examples based
on particular models for the form of the Jacobian. The ex-
amples we present in Figs. 2–5 and the nonlinear simulations
used a form of the FitzHugh-Nagumo model �31�, for which
the local dynamics is given by

dA

dt
= ��A − A3 − B� ,

dB

dt
= − B + 2A , �11�

and the Jacobian is

J = �� − �

2 − 1
� �12�

where � is a control parameter. �For the linearized analysis,
only the Jacobian �12� is needed.� A and B play the roles of
activator and inhibitor, respectively. A Hopf bifurcation oc-
curs at �=1; the fixed point is unstable for �
1. We also
studied another model using the simpler Jacobian

J = � � 1

− 1 �
� �13�

with control parameter � and Hopf instability for �
0,
hereafter referred to as the “� model.” For the � model with
�
0, both species are autocatalytic, but one inhibits the
other. In most cases, qualitatively similar results were ob-
tained for both models. When the results for the � model
differ from those of the FN model, we describe them ver-
bally.

Figure 2 shows typical effects of differential flow on the
FDO peak. Differential flow with either fast inhibitor or fast
activator transport shifts the position and height of the peak
growth rate. It can also shift slightly the location of the pole
in the phase velocity �i.e., the zero of Im k� but usually this
shift is less pronounced than the shift of the peak in Re k. In
the case shown in Fig. 2, the peak height and location are
both apparently monotonic in �v near �v=1; the peak shifts
upward and to the right as �v decreases. This is not universal,
however. In some cases �see, for example, Figs. 3 and 5,
below�, the peak height has its minimum when �v=1, so that
faster flow of either species raises the height of the instability
peak. In one case we examined using the marginally stable
�-model with �=1, the peak shifts to the right both for �v

1 and �v�1. What has been referred to as the differential
flow instability can be understood as a special case in which
a growth rate peak whose maximum is less than zero in the
absence of differential flow is shifted above zero when �v
�1, thus creating a convective instability even though the
fixed point of the local system is stable. An example of this is
shown in Fig. 3. Physically, the shifting of the peak relative
to the phase velocity pole means that in the presence of dif-
ferential flow the fastest-growing mode is a traveling wave
with some finite velocity, rather than a uniform oscillation.
From Fig. 2 it is evident that, while the amplitude ratio R of
the two species remains constant in the pure FDO case �v
=1, differential flow modifies both their amplitude and phase
relations in a frequency-dependent manner.

Figure 4 shows the effect of differential diffusion without
differential flow ��D�1,�v=1�. A family of solution curves
is shown for �D�1 �i.e., equal diffusion or fast inhibitor
diffusion�. This is the case that renders a Turing instability
possible in a stationary medium. The growth rate peak is
distorted somewhat relative to that of the pure FDO case.
This effect was more pronounced in some other examples we
studied. In one case, fast inhibitor diffusion lowered and

FIG. 5. �Color online� Interacting effects of differential flow and
diffusion. Here the differential diffusion is constant, and the veloc-
ity ratio is varied. FN model, �=1.2, D=0.05, �D=0.15. �v
=0.5,0.75,1 ,1.5,2. Thick curve, �v=1; thin solid curves, �v�1;
dashed curves, �v
1. With increasing flow ratio, the two peaks are
shifted closer together and begin to merge. Departure from equal
flow in either direction raises the height of the FDO peak while
lowering the Turing peak. Departure from equal flow also causes
the phase velocities of the Turing modes to depart from 1.
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broadened the FDO peak slightly while fast activator diffu-
sion raised and sharpened the peak significantly. In any case,
however, the distortion of the FDO peak is rather less salient
than the growth of a second peak at a different frequency.
When this second peak rises above zero, the modes con-
tained within it have two important features: First, their
phase velocity is close to 1. The phase velocity curves in Fig.
4 flatten out at c
1 for the range of amplified frequencies in
the second peak. This means that, in the comoving frame, the
waves are stationary. Second, for frequencies within the
range of the second peak, the imaginary part of the amplitude
ratio Im R is very small, indicating a lack of phase lag be-
tween the two components. Both of these observations are
consistent with the Turing instability caused by differential
diffusion. Because diffusion is directionally symmetric, a
mechanism driven by differential diffusion cannot cause a
phase lag between the two components. Turing patterns are
reflection symmetric, and stationary in the comoving frame.
In view of these observations we attribute the second peak to
Turing-like modes and refer to it as a Turing peak. In this
example it is quite clearly separated from the FDO peak, the
latter being characterized by strongly frequency-dependent
phase velocities and a nonzero imaginary component Im R of
the amplitude ratio. There is a range of frequencies between
the two peaks for which there are only damped modes. In
some cases, however, the two peaks can grow broader and
almost merge, so that as the driving frequency changes, the
resulting waves change continuously from a FDO-like to a
Turing-like character. Even in such cases, the Turing modes
are distinguishable by means of their near-unity phase ve-
locities and nearly real amplitude ratios. The Turing modes
correspond precisely to the wavelengths of Turing unstable
modes in the stationary reaction-diffusion system, and the
range of frequencies is therefore related to this wavelength
range through the flow velocity. The range of FDO-unstable
frequencies, by comparison, is approximately that given in
Ref. �14� for the pure FDO case.

In Fig. 5, we examine the interaction between differential
flow and differential diffusion, allowing both differential
transport modes to operate simultaneously, as in Refs.
�11–13�. Here we plot the dispersion solutions for a constant
value of �D as �v varies. �D is such that a well-defined Turing
peak exists for �v=1. We observe that setting �v�1 shifts
the FDO peak as we expect. In this case, unlike that of Fig.
2 but similar to Fig. 3, the FDO peak grows higher for either
fast activator or fast inhibitor flow. In contrast, the Turing
peak is lowered for any �v�1. The two peaks appear to have
a seesaw relation. Differential flow has other effects on the
modes within the Turing peak. Their velocity begins to de-
part from unity and is less uniform across the peak, and the
amplitude ratio is no longer purely real. In these senses, the
“Turing” modes begin to lose their Turing-like character in
the presence of differential flow, even though one can still
perceive two separate peaks in the growth rate.

III. NONLINEAR SIMULATIONS

We now show the results of some nonlinear simulations of
the FitzHugh-Nagumo flow system in order to illustrate the

application of the dispersion relations to experiments. We
choose to simulate the FN model with �=1.5, D=0.05, �v
=1 and �D=0.2. As in the examples of Fig. 4, the dispersion
relation shows both a FDO and a Turing peak. The natural
oscillation frequency �the pole in the phase velocity� is �0

1.2. For comparison with the simulations, we plot both
solutions k± on the same axes, for physical frequencies �

0. These plots are shown in Fig. 6. Figure 7 shows a series
of simulations with different driving frequencies. The bound-
ary conditions for these simulations were given by

u�0,t� = a0�cos �t

sin �t
�

where a0=0.05. The plots in the left column of this figure
show the space-time patterns of the waves generated by the
boundary perturbation. The dotted white line in each plot
represents the trajectory of a point comoving with the flow.
This allows the phase velocities of the waves to be compared
readily with the flow velocity. The plots in the right column
show both dynamical variables a and b as functions of posi-

FIG. 6. �Color online� Growth rate, phase velocity, and modulus
and phase of the complex amplitude ratio as functions of frequency
for the model of our nonlinear simulations. Both relevant solutions
are plotted. The modulus 	R	 gives the ratio of the peak amplitudes
for the oscillations of the two dynamical variables, while the phase
or argument of R gives the relative phase shift.
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tion for a single time. The latter plots allow an examination
of the wave forms, including the phase shifts between acti-
vator and inhibitor. The dispersion relation �Fig. 6� predicts a
positive growth rate at �=0, and, accordingly, a constant
�zero-frequency� perturbation indeed gives rise to growing
stationary waves which saturate at a finite amplitude �Fig.
7�a��. At �=0.9, below the natural frequency �0=1.2, the
dispersion relation shows that both k+ and k− have positive
growth rates, which are expected to compete. k− �the solid
curve in Fig. 6� contributes waves with a phase velocity of
�0.5, i.e., downstream waves moving slower than the flow
velocity, while k+ gives waves with a negative phase veloc-
ity, i.e., upstream traveling waves. Near the boundary, a su-
perposition of both waves occurs, but the upstream waves
have a much larger growth rate and they dominate at posi-
tions farther downstream, crowding out the other mode en-
tirely and reaching a nonlinear saturated amplitude �Fig.
7�b��. At �=2.5
�0, only k+ has a positive growth rate,
giving waves with a positive �downstream� phase velocity
faster than the flow speed. A small admixture of the other
mode k− can be discerned near the boundary, but it decays
rapidly with downstream distance �Fig. 7�c��. The asymptotic
waves shown in Figs. 7�a�–7�c� agree qualitatively with the

kinematic results.2 �=3.5 falls within the gap between the
FDO and Turing peaks. Thus there are no growing modes at
this frequency and the disturbance decreases with down-
stream distance �Fig. 7�d��. �=5, however, lies within the
Turing peak of the k− solution. As predicted by the dispersion
relation, the resulting waves have a velocity nearly equal to
the flow velocity and there is almost no phase difference
between the two species.

The amplitude and phase characteristics of the nonlinear
wave forms �right column of Fig. 7� may also be compared
with the predictions of the linear dispersion relation, and in
this case the agreement is quite close. In the complex expo-
nential solution Eq. �3�, the modulus of the ratio R=v /u
gives the ratio of the peak amplitudes of the oscillations of
the two dynamical variables, while the argument of R gives
the relative phase. For frequencies within the FDO peak, our
nonlinear simulations show that, as one expects from Fig. 6,
the ratio of the peak amplitudes of b and a is slightly larger
than unity, while the phase shift is approximately � /4

arg�R�. For the Turing mode at �=5, on the other hand,
the linear dispersion relation gives a very small phase shift
for the relevant k− solution, and an amplitude ratio slightly
larger than 0.5. The phase shift is indeed almost zero and the
b amplitude is indeed smaller than that of a. The actual am-
plitude ratio in the saturated waveform is approximately 0.6,
close to the prediction of the linearized analysis.

Finally, we note that at frequencies where more than one
mode is present, one can be selected by manipulating the
driving function itself so as to align it with one eigenvector
or the other. As an example, consider �=0.9, a frequency at
which both solution branches exhibit positive growth rates.
Here, we find that for the faster-growing k+ mode the com-
plex amplitude ratio is R+
0.84−0.8i while for the other
mode R−
0.94+0.68i. The driving function used in Fig. 7
excites both of these modes and a superposition is seen near
the upstream boundary. By tuning the driving function to be

u�0,t� = a0 Re� 1

R+
�ei�t = a0 Re� ei�t

	R+	ei��t+�+� �
= a0� cos �t

0.84 cos �t + 0.8 sin �t
� ,

however, we can excite mostly the k+ mode so that the up-
stream traveling waves appear almost uncontaminated. Con-
versely, by choosing the amplitude and phase of the driving
to align with the other eigenvector, we excite mostly the
other, k− mode. Eventually, however, the faster-growing k+
mode begins to appear, possibly through nonlinear effects or

2The kinematics of FDO waves is governed by the readily calcu-
lable �7,8,19� phase function ��t ,x� of the medium that oscillates
with natural frequency �0, is periodically forced at the inflow at
frequency �, and flows with velocity v. The phase velocity follows
as c=v / �1−�0 /�� and the wavelength as �= 	v /�	. Note the sta-
tionary wave c=0 at �=0, the pole c=� at � /�0=1, and the re-
versal of the phase velocity from upstream propagating c�0 for
�0 /�
1 to downstream propagating c
0 for �0 /��1, all in
agreement with experiments �7,19�.

FIG. 7. �Color online� Results of nonlinear simulations of the
FN model for sinusoidal boundary perturbations at five different
frequencies �a� 0, �b� 0.9, �c� 2.5, �d� 3.5, and �e� 5. Left column:
space �horizontal� vs time �vertical� plots with gray scale showing
concentration A. Dotted white lines show the flow velocity. Right
column: concentrations A �thin line� and B �thick dashed line� vs
space �horizontal axis�.
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through the small admixture still present in the boundary
condition, and the k+ mode eventually wins in the asymptotic
downstream region. Simulation results which show this se-
lection effect are plotted in Fig. 8.

IV. CONCLUSIONS AND EXPERIMENTAL TESTS

We have examined the linear stability analysis relevant to
the convective growth of spatiotemporal patterns in a reac-
tive flow system, excited by a small sinusoidal perturbation
of a fixed point at the inflow boundary. We examined the real
and imaginary parts of the wave number as functions of the
real boundary forcing frequency. They represent the down-
stream growth rate and periodicity of the disturbances caused
by a boundary perturbation. We found that the growth rate as
a function of frequency exhibits at most two physically dis-
tinct peaks corresponding to two types of waves, one or both
of which may be present and convectively unstable. We
found that, in addition to the phase velocity, the complex
ratio R of activator and inhibitor concentrations, which en-
codes the relative amplitude and phase of oscillations in the
activator and inhibitor concentrations, provides an additional
criterion for distinguishing the types of modes. Turing-like
modes are distinguished from FDO-like modes by the lack of
a phase lag between the two components and by phase ve-

locities that are close to the flow velocity, so that in the
comoving frame they are stationary patterns. Viewing the
different types of modes as belonging to peaks in the growth
rate, we saw the close relationship between FDO and the
differential flow instability. One can be viewed as a continu-
ous deformation of the other. A primary effect of differential
flow is to shift the FDO peak. What has been referred to as
the differential flow instability �the appearance of a traveling
wave instability in a medium which is neither Hopf nor Tur-
ing unstable� can be interpreted as a case in which a sub-
threshold FDO peak is shifted sufficiently to bring it above
zero and to create unstable modes �Fig. 3�.

We now comment on experimental verifications of the
present predictions. The presence of two peaks could be seen
in an experiment in which the perturbation frequency at the
inflow is the control parameter. Frequencies for which the
growth rate is positive will result in sustained waves, while
the waves will die out and fail to propagate if the growth rate
is negative. Based on our results we expect that growing
waves will appear within at most two frequency ranges. The
phase velocities can also be measured and compared with
our general findings.

Two types of experiments may be envisaged, in which
oscillatory driving is implemented differently. The first type
�20,32,22� makes use of a linearly growing, light-sensitive
reaction-diffusion system. The effective moving boundary is
provided by a moving mask which extinguishes the reaction
on the illuminated side of a moving line. The illumination at
the moving boundary can be modulated periodically, result-
ing in an oscillatory perturbation. In these experiments, dif-
ferential diffusion �D�1 is achieved by immobilizing one
species on a gel, but differential flow is absent, �v=1.

The second type of experiment is conducted in a packed
bed reactor, which is fed by the outlet of a continuous stirred
tank reactor �5,16–19,21�. The CSTR may be manipulated to
be stationary or to oscillate slower or faster than the medium
in the PBR. This leads to stationary and upstream and down-
stream moving waves, respectively �5–7,19,8�. By packing
the PBR with ion-exchanger beads that immobilize either
activator or inhibitor, conditions of simultaneous differential
diffusion and differential flow may be obtained. References
�11,12� modeled this by setting �D=�v.

It is a challenge to devise experiments in which the flow
ratio, diffusion ratio, and driving frequency can be varied
independently. While the phase velocities of traveling waves
can easily be measured, verification of other properties of the
waves may present experimental challenges. Verification of
the predicted phase relationships would require simultaneous
measurements of both activator and inhibitor concentrations.
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